11 research outputs found

    Development of a Stem Cell-Based Tissue Engineered Vascular Graft

    Get PDF
    Limited autologous vascular graft availability and poor patency rates of synthetic grafts for small-diameter revascularization (e.g., coronary artery bypass, peripheral bypass, arteriovenous graft for hemodyalisis access, etc.) remain a concern in the surgical community. A tissue engineering vascular graft (TEVG), including suitable cell source, scaffold, seeding, and culture methods can potentially solve these limitations. Muscle-derived stem cells (MDSCs) are multipotent cells, with long-term proliferation and self-renewal capabilities, which represent a valid candidate for vascular tissue engineering applications due to their plasticity/heterogeneity. The poly(ester urethane) urea (PEUU) is also an attractive potential candidate for use as a TEVG due to its elasticity and tunable mechanical and degradation properties. We hypothesized that a novel scaffold optimally seeded with stem cells, acutely cultured and stimulated in vitro, and ultimately implanted in vivo will remodel into a functional vascular tissue. To test this hypothesis, we developed an innovative, multidisciplinary framework to fabricate and culture a TEVG in a timeframe compatible with clinical practice. In this approach, MDSCs were incorporated into a newly-designed and characterized PEUU-based scaffold via a novel seeding device, which was tested quantitatively for cell seeding uniformity and viability. The seeded TEVGs were acutely cultured in dynamic conditions and assessed for cell phenotype, proliferation, and spreading. The conduits were then implanted systemically in a small and a large animal model and assessed, at different time points, for patency rate, remodeling, and cellular engraftment and phenotype. The seeding technology demonstrated a rapid, efficient, reproducible, and quantitatively uniform seeding without affecting cell viability. The PEUU scaffold that was developed is suitable for arterial applications, exhibiting appropriate strength, compliance, and suture retention properties. The dynamic culture resulted in cell proliferation and spreading within the 3D scaffold environment. Rat preclinical studies suggested a role of the seeded MDSCs in the maintenance of patency and in the remodeling of the TEVG toward a native-like structure. Pig studies were inconclusive due to a poor pre-implantation cell density. Future work should address this and other issues encountered during the large animal study, and should test longer time points in both models. Finally, this approach might benefit from a more readily available cell source such as the bone marrow

    In Vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model

    Get PDF
    Limited autologous vascular graft availability and poor patency rates of synthetic grafts for bypass or replacement of small-diameter arteries remain a concern in the surgical community. These limitations could potentially be improved by a tissue engineering approach. We report here our progress in the development and in vivo testing of a stem-cell-based tissue-engineered vascular graft for arterial applications. Poly(ester urethane)urea scaffolds (length=10mm; inner diameter=1.2mm) were created by thermally induced phase separation (TIPS). Compound scaffolds were generated by reinforcing TIPS scaffolds with an outer electrospun layer of the same biomaterial (ES-TIPS). Both TIPS and ES-TIPS scaffolds were bulk-seeded with 10×106 allogeneic, LacZ-transfected, muscle-derived stem cells (MDSCs), and then placed in spinner flask culture for 48h. Constructs were implanted as interposition grafts in the abdominal aorta of rats for 8 weeks. Angiograms and histological assessment were performed at the time of explant. Cell-seeded constructs showed a higher patency rate than the unseeded controls: 65% (ES-TIPS) and 53% (TIPS) versus 10% (acellular TIPS). TIPS scaffolds had a 50% mechanical failure rate with aneurysmal formation, whereas no dilation was observed in the hybrid scaffolds. A smooth-muscle-like layer of cells was observed near the luminal surface of the constructs that stained positive for smooth muscle α-actin and calponin. LacZ+ cells were shown to be engrafted in the remodeled construct. A confluent layer of von Willebrand Factor-positive cells was observed in the lumen of MDSC-seeded constructs, whereas acellular controls showed platelet and fibrin deposition. This is the first evidence that MDSCs improve patency and contribute to the remodeling of a tissue-engineered vascular graft for arterial applications. © 2010 Mary Ann Liebert, Inc

    Functional remodeling of an electrospun polydimethylsiloxane‐based polyether urethane external vein graft support device in an ovine model

    No full text
    © 2019 Wiley Periodicals, Inc. Saphenous vein graft (SVG) failure rates are unacceptably high, and external mechanical support may improve patency. We studied the histologic remodeling of a conformal, electrospun, polydimethylsiloxane-based polyether urethane external support device for SVGs and evaluated graft structural evolution in adult sheep to 2 years. All sheep (N = 19) survived to their intended timepoints, and angiography showed device-treated SVG geometric stability over time (30, 90, 180, 365, or 730 days), with an aggregated graft patency rate of 92%. There was minimal inflammation associated with the device material at all timepoints. By 180 days, treated SVG remodeling was characterized by minimal/nonprogressive intimal hyperplasia; polymer fragmentation and integration; as well as the development of a neointima, and a confluent endothelium. By 1-year, the graft developed a media-like layer by remodeling the neointima, and elastic fibers formed well-defined structures that subtended the neo-medial layer of the remodeled SVG. Immunohistochemistry showed that this neo-media was populated with smooth muscle cells, and the intima was lined with endothelial cells. These data suggest that treated SVGs were structurally remodeled by 180 days, and developed arterial-like features by 1 year, which continued to mature to 2 years. Device-treated SVGs remodeled into arterial-like conduits with stable long-term performance as arterial grafts in adult sheep

    Functional remodeling of an electrospun polydimethylsiloxane‐based polyether urethane external vein graft support device in an ovine model

    No full text
    © 2019 Wiley Periodicals, Inc. Saphenous vein graft (SVG) failure rates are unacceptably high, and external mechanical support may improve patency. We studied the histologic remodeling of a conformal, electrospun, polydimethylsiloxane-based polyether urethane external support device for SVGs and evaluated graft structural evolution in adult sheep to 2 years. All sheep (N = 19) survived to their intended timepoints, and angiography showed device-treated SVG geometric stability over time (30, 90, 180, 365, or 730 days), with an aggregated graft patency rate of 92%. There was minimal inflammation associated with the device material at all timepoints. By 180 days, treated SVG remodeling was characterized by minimal/nonprogressive intimal hyperplasia; polymer fragmentation and integration; as well as the development of a neointima, and a confluent endothelium. By 1-year, the graft developed a media-like layer by remodeling the neointima, and elastic fibers formed well-defined structures that subtended the neo-medial layer of the remodeled SVG. Immunohistochemistry showed that this neo-media was populated with smooth muscle cells, and the intima was lined with endothelial cells. These data suggest that treated SVGs were structurally remodeled by 180 days, and developed arterial-like features by 1 year, which continued to mature to 2 years. Device-treated SVGs remodeled into arterial-like conduits with stable long-term performance as arterial grafts in adult sheep

    Pericyte-based human tissue engineered vascular grafts

    No full text
    The success of small-diameter tissue engineered vascular grafts (TEVGs) greatly relies on an appropriate cell source and an efficient cellular delivery and carrier system. Pericytes have recently been shown to express mesenchymal stem cell features. Their relative availability and multipotentiality make them a promising candidate for TEVG applications. The objective of this study was to incorporate pericytes into a biodegradable scaffold rapidly, densely and efficiently, and to assess the efficacy of the pericyte-seeded scaffold in vivo. Bi-layered elastomeric poly(ester-urethane)urea scaffolds (length = 10 mm; inner diameter = 1.3 mm) were bulk seeded with 3 × 106 pericytes using a customized rotational vacuum seeding device in less than 2 min (seeding efficiency > 90%). The seeded scaffolds were cultured in spinner flasks for 2 days and then implanted into Lewis rats as aortic interposition grafts for 8 weeks. Results showed pericytes populated the porous layer of the scaffolds evenly and maintained their original phenotype after the dynamic culture. After implantation, pericyte-seeded TEVGs showed a significant higher patency rate than the unseeded control: 100% versus 38% (p < 0.05). Patent pericyte-seeded TEVGs revealed extensive tissue remodeling with collagen and elastin present. The remodeled tissue consisted of multiple layers of α-smooth muscle actin- and calponin-positive cells, and a von Willebrand factor-positive monolayer in the lumen. These results demonstrate the feasibility of a pericyte-based TEVG and suggest that the pericytes play a role in maintaining patency of the TEVG as an arterial conduit. © 2010 Elsevier Ltd
    corecore